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1 Introduction

Many abstract models of economic dynamics for discrete inclusions, macroeconomic problems
are described in terms of set-valued mappings and form a component part of the modern math-
ematical theory of mathematical economics. The first and second-order ordinary discrete and
differential inclusions, naturally arising from certain physical, economical and control prob-
lems, have attracted the attention of many researchers. Much earlier, Tarafdar (1991) and
Bagh (1998) and then Urai (2010) published an important paper devoted to equilibrium in
abstract economies; Bagh (1998) uses graph convergence of set -valued maps to show the exis-
tence of an equilibrium for an abstract economy without assuming the lower semicontinuity of
the constraint maps. Fujimoto & Oshime (1994) and Levin (1991) provide some applications
of set-valued mappings in mathematical economics. The article Freni et al. (2008) investigate
an optimal control problem with mixed constraints associated with a certain linear model and
establish a set of necessary and sufficient conditions for optimal trajectories, involving so-called
co-state inclusion, which can be interpreted as the existence of a dual path of prices supporting
the optimal path. A dynamic programming approach is also being developed, proving that the

*How to cite (APA): Mahmudov, E.N., Güloğlu, B., Mastalieva, D. (2022). An abstract model of economic
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value function is a bilateral viscosity solution to the coupled Hamilton-Jacobi-Bellman equation.
Bevia et al. (2003) present a set of axioms guaranteeing that, in exchange economies with or
without indivisible goods, the set of Nash, Strong and active Walrasian Equilibria all coincide
in the framework of market games. Quah & Strulovici (2013) provide another set of sufficient
conditions on the primitives of the problem when both utility and discount functions depend
on some one-dimensional state. The article by Medvegyev (2013) discusses an extension of
the classical problem of the positivity of the growth rate in the Neumann-Gale model. It is
shown that the exploitation of the labor is a necessary and sufficient condition for the positivity
of the growth rate. The mathematical literature presents (Aubin & Cellina (1984); Tarafdar
(1991); Bao & Mordukhovich (2014); Mordukhovich (2000) and references therein) a systematic
approach to problems in economic equilibrium based on fixed-point arguments and rigorous set-
theoretical (axiomatic) methods. It describes the highest-level research on the classical theme,
fixed points and economic equilibria, in the theory of mathematical economics, and also presents
basic results in this area, especially in the general equilibrium theory and non-co-operative game
theory. In Budak et al. (2021), a nonlinear optimization model is developed to determine the
price suggestions. The developed model will help to increase the profits of logistics companies
in the long term.

Along with the so-called primal problems, the construction and study of the corresponding
dual problems has always been relevant. Often, duality is associated with convex problems, yet
it turns out that duality theory also has a fundamental impact even on the analysis of nonconvex
problems. Dual Variables are so important that they have many names. Mathematicians will
call them dual variables. In more general contexts, they may call them Lagrange multipliers
(or just multipliers). Economists may call them dual prices, shadow prices, or implicit prices.
The shadow price is also defined as the rate of change in the optimal objective function value
with respect to the unit change in the availability of a resource. Thus, optimal value of the dual
variable represents the per unit price (worth or marginal price) of the first resource.

From expressions of parameters of both primal and dual problems, it is clear that for the
unit of measurement to be consistent, the dual variable must be expressed in terms of re-
turn (or worth) per unit of resource. This is called dual price (simplex multiplier or shadow
price) of resource. In other words, optimal value of a dual variable associated with a particular
primal constraint indicates the marginal change (increase, if positive or decrease, if negative)
in the optimal value of the primal objective function. Duality is also used to solve a linear
programming problem by the simplex method, in which the initial solution is infeasible (the
technique is known as the dual simplex method). Duality theory is, in fact, closely related to
game theory. In many contexts, a decision-maker does not operate in isolation, but in contend
with other decisionmakers with conflicting objectives. Game theory is one approach for dealing
with these “multiperson” decision problems. It views the decision-making problem as a game
in which each decision-maker, or player, chooses a strategy or an action to be taken. When
all players have selected a strategy, each individual player receives a payoff. Moreover, when
solving linear programming problems, if some shadow price is positive, then the corresponding
constraint must be satisfied with equality. In addition, if the constraint of the primary ob-
ject is optional, then its corresponding shadow price must be zero. More recently, Maccheroni
(2004) studies Yaari’s dual theory without completeness axiom. The foundation for this type
of analysis is due to Mahmudov (2005); Mahmudov & Mastaliyeva (2015); Mahmudov (2018a),
Mahmudov (2018b); Mahmudov & Yusubov (2021); Mahmudov (2021a); Mahmudov (2021b);
Mahmudov & Mardanov (2022) for various (ordinary and partial) optimization problems with
differential inclusions, using the apparatus of infimal convolution (Rockafellar (1972); Mahmudov
(2011)) and locally adjoint mappings, duality problems have been successfully constructed, and,
consequently, the duality theorem is proved and duality relation is established. Therefore, in
the case of weak duality, the cost of the primal problem is more than the cost of dual. In
the case of strong duality, these values are equal. It is also proved that conjugate differential
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inclusions of the Euler-Lagrange type are simultaneously a dual relation. Conjugate duality for
generalized convex optimization problems and strong Fenchel-Lagrange duality were analyzed
by Dhara & Mehra (2007), Fajardol & Vidal (2018). Some methods of economics are based on
the invertibility of the derivative of the Pareto frontier and cannot be applied to problems for
which this frontier is not strictly concave. Cole & Kubler (2012) show how these methods can
be extended to a weakly concave Pareto frontier by expanding the state space.

In addition, many authors have considered questions of existence and various qualitative
problems concerning discrete and differential inclusions. The articles of Auslender (1994),
Kourogenis (2003), Zhang & Li (2009) are devoted to the qualitative problems of secondorder
differential inclusions, where the existence results for second-order differential inclusions are
studied. Agarwal et al. (2003) and their followers considered second-order discrete inclusions in
terms of set-valued mappings and proved existence theorems for feasible solutions.

In the present work, the optimality conditions for a second order discrete inclusions (DSIs)
together with their duality approach were considered for the first time. In turn, for the duality
problem of a discrete-approximate problem of the second order, skilfully computations of ad-
joint and support functions are required. Building on these results, we then treat dual results
according to the dual operations of addition and infimal convolution of convex functions.

Thus, this article is devoted to one of the difficult and interesting areas - the construction of
duality for an abstract model of economic dynamics and a separate study of the Neumann-Gale
model with second order DSIs.

The posed problems and their dualities are new. The paper is organized in the following
order:

In Section 2, the needed facts and supplementary results from the book of Mahmudov (2011)
are given; Hamiltonian function H and argmaximum sets of a set-valued mapping F , Kakutani’s
fixed point theorem, the locally adjoint mapping (LAM), infimal convolution of proper convex
functions, and the problems for second order DSIs (PD) with endpoint constraints are formulated.

In Section 3 necessary and sufficient conditions of optimality for an abstract model of eco-
nomic dynamics with second order DSIs is proved; for the optimality of the feasible solution
{xt}Tt=0 of the primal problem, a pair of vectors {x∗t } , {µ∗

t } satisfying the Euler-Lagrange type
inclusion is required. Moreover, if a certain ”nondegeneracy condition” is satisfied, that is, the
standard condition of convex analysis for the presence of an interior point, then the necessary
condition is at the same time sufficient for optimality.

In Section 4 the dual problem for abstract model of economic dynamics with second order
DSIs (PD) is constructed. In what follows, we prove that if β and β∗ are the values of primal
and dual problems, respectively, then β ≥ β∗ for all feasible solutions. This inequality expresses
the weak duality property, if for {xt}Tt=0 and {x∗t } , {µ∗

t } the inequality β > β∗ holds. Besides,
this inequality is interpreted as: the worth of resources is more than profit. Thus, so long as
the total profit (return) from all activities is less than the worth of the resources, the feasible
solution of both primal and dual is not optimal. The optimality (maximum profit or return) is
reached only when the resources have been completely utilized. This is only possible if the worth
of the resources (i.e. input) is equal to profit (i.e. output). Moreover, under the nondegeneracy
condition, the existence of a solution to one of these problems implies the existence of a solution
to the other problem, where β = β∗, and in the case where β > −∞ the dual problem has
a solution. Equality β = β∗ means that there is a strong duality property. It means that
the EulerLagrange type adjoint inclusion at the same time is a dual relation, that is a pair of
solutions of primal and dual problems satisfies this relation. It is not a coincidence that the
maximal cost in the dual equals the optimal profit in the primal and that the optimal solution of
the dual is the vector of shadow prices-these are fundamental relations between the primal and
the dual. Finally, duality relationship between a pair of optimization problems with endpoint
constraint established; it is proved that the Euler-Lagrange type adjoint DSI at the same time
is a dual relation.
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Section 5 is devoted to duality in problems with second order discrete model with polyhedral
DSIs. The dual variable is interpreted as a price vector of a resource. In economic terminol-
ogy the equality to zero of some component of this vector means the price of goods that are
oversupplied must drop to zero by the law of supply and demand. This fact is what justifies
interpreting the objective for the dual problem as maximizing the total implicit value of the
resources consumed, rather than the resources allocated

Section 6 is devoted to the model of economic dynamics described by the second order DSI,
i.e. multivalued mapping, the graph of which is a cone in the space R3n. Based on Lemma
1, the LAM is calculated and Theorem 1 is applied for the necessary and sufficient optimality
conditions. Then is considered an interesting special case - the so-called Neumann-Gale model.
It is proved that for the optimal trajectory, there are such prices that when the intensities
of technological capacity of manufacture are selected at the instant time (t, t + 1), the optimal
trajectory corresponds to the one that provides the maximum income in the prices of the instant
time t+ 2.

2 Needed Facts and Problem Statement

Further, for the convenience of the reader, all the necessary concepts, definitions of a convex
analysis can be found in the book of Mahmudov (2011) . Let Rn be a n-dimensional Euclidean
space, ⟨x, u⟩ be an inner product of elements x, y ∈ Rn, and (x, y) be a pair of x, y. Assume
that G : Rn × Rn ⇒ Rn is a set-valued mapping from R2n = Rn × Rn into the set of subsets of
Rn. Then G : R2n ⇒ Rn is convex if its gph G = {(x, y, z) : z ∈ G(x, y)} is a convex subset of
R3n. The set-valued mapping G is convex closed if its graph is a convex closed set in R3n. The
domain of G is denoted by domG and is defined as follows dom G = {(x, y) : G(x, y) ̸= ∅}.G is
convex-valued if G(x, y) is a convex set for each (x, y) ∈ domG. Let us introduce the Hamiltonian
function and argmaximum set for a set-valued mapping G

HG (x, y, z∗) = sup
z

{⟨z, z∗⟩ : z ∈ G(x, y)} , z∗ ∈ Rn,

GA (x, y, z∗) = {z ∈ G(x, y) : ⟨z, z∗⟩ = HG (x, y, z∗)} ,

respectively. For convex G we set HG (x, y, z∗) = −∞ if G(x, y) = ∅. As usual, WA (x∗) is a
support function of the set A ⊂ Rn, i.e., WA (x∗) = supx {⟨x, x∗⟩ : x ∈ A} , x∗ ∈ Rn.

Let int A be the interior of the set A ⊂ R3n and ri A be the relative interior of the set A,
i.e. the set of interior points of A with respect to its affine hull Aff A.

The convex cone KA (w0) , w0 = (x0, y0, z0) is called the cone of tangent directions at a point
w0 ∈ A to the set A if from w̄ = (x̄, ȳ, z̄) ∈ KA (w0) it follows that w̄ is a tangent vector to the
set A at point w0 ∈ A, i.e., there exists such function η : R1 → R3n that w0+λw̄+ η(λ) ∈ A for
sufficiently small λ > 0 and λ−1η(λ) → 0, as λ ↓ 0.

A function φ is called a proper function if it does not assume the value −∞ and is not
identically equal to +∞. Obviously, φ is proper if and only if domφ ̸= ∅ and φ(x, y) is finite
for (x, y) ∈ domφ = {(x, y) : φ(x, y) < +∞}.

In general, for a set-valued mapping G a set-valued mapping G∗(·, x, y, z) : Rn ⇒ R2n defined
by

G∗ (z∗; (x, y, z)) := {(x∗, y∗) : (x∗, y∗,−z∗) ∈ K∗
G(x, y, z)} ,

is called the LAM to a set-valuedG at a point (x, y, z) ∈ gphG, whereK∗
G(x, y, z)≡ K∗

gphG(x, y, z)
is the dual to the cone of tangent directions KgphG(x, y, z). We provide another definition of
LAM to mapping G which is more relevant for further development

G∗ (z∗; (x, y, z)) := {(x∗, y∗) : HG (x1, y1, z
∗)−HG (x, y, z∗) ≤ ⟨x∗, x1 − x⟩

+ ⟨y∗, y1 − y⟩ ,∀ (x1, y1) ∈ R2n
}
, (x, y, z) ∈ gphG, z ∈ GA (x, y, z∗) .
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Clearly, for the convex mapping the HamiltonianH (·, ·, z∗) is concave and the latter and previous
definitions of LAMs coincide.

Definition 1. A function φ(x, y) is said to be a closure if its epigraph epi φ =
{(

x0, x, y
)
:

x0 ≥ φ(x, y)
}
is a closed set.

Definition 2. The function φ∗ (x∗, y∗) = supx,y {⟨x, x∗⟩+ ⟨y, y∗⟩ − φ(x, y)} is called the conju-
gate of φ. It is clear to see that the conjugate function is closed and convex.

Let us denote

MG (x∗, y∗, z∗) = inf
x,y,z

{⟨x, x∗⟩+ ⟨y, y∗⟩ − ⟨z, z∗⟩ : (x, y, z) ∈ gphG} ,

that is, for every (x, y) ∈ R2n

MG (x∗, y∗, z∗) ≤ ⟨x, x∗⟩+ ⟨y, y∗⟩ −HG (x, y, z∗) .

It is clear that the function

MG (x∗, y∗, z∗) = inf
x,y

{⟨x, x∗⟩+ ⟨y, y∗⟩ −HG (x, y, z∗)}

is a support function taken with a minus sign. Besides, it follows that for a fixed z∗

MG (x∗, y∗, z∗) = − [HG (·, ·, z∗)]∗ (x∗, y∗)

that is, MG is the conjugate function for HG (·, ·, z∗) taken with a minus sign.

Definition 3. We recall that the operation of infimal convolution ⊕ of functions gi, i = 1, . . . , k
is defined as follows

(g1 ⊕ · · · ⊕ gk) (u) = inf
{
g1
(
u1
)
+ . . .+ gk

(
uk
)
: u1 + . . .+ uk = u

}
, ui ∈ Rn, i = 1, . . . , k.

The infimal convolution (g1 ⊕ · · · ⊕ gk) is said to be exact provided the infimum above is
attained for every u ∈ Rn. One has dom (g1 ⊕ · · · ⊕ gk) =

∑i=k
i=1 dom gi. Besides for a proper

convex closed function gi, i = 1, . . . , k their infimal convolution (g1 ⊕ · · · ⊕ gk) is convex and
closed (but not necessarily proper). If gi, i = 1, . . . , k are functions not identically equal to +∞,
then (g1 ⊕ · · · ⊕ gk)

∗ =
∑i=k

i=1 g
∗
i . Thus, the conjugate of infimal convolution is the sum of the

conjugates and this holds without any requirement on the convex functions. The operations +
and ⊕ are thus dual to each other with respect to taking conjugates.

Let us now try to describe the functioning of a certain economic system at an abstract level.
Let us assume that this functioning occurs discretely in time, i.e. time t takes values 0, 1, , , T .

Definition 4. (Kakutani’s fixed point theorem) Let S be a compact, convex subset of Rn and
let U : S ⇒ Rn be a closed convex-valued map. Then U has a fixed point.

Moreover, if at time (t, t+1) there is a vector of resources (x, y) ∈ R2n, then due to the activity
of production, this vector at time t+2 can be processed into one of the vectors z ∈ F (x, y), where
F (x, y) is a convex multivalued mapping, F (x, y) ⊆ Rn. Thus, the possible amount of (xt, xt+1)
resources, over time periods, are related by the ratios xt+2 ∈ F (xt, xt+1) , t = 0, . . . , T − 2. Let
us assume that the vector of initial resources (x0, x1) is given. If the function φ (xT−1, xT ) is
interpreted as costs, then the problem posed is the problem of choosing a trajectory leading to
a given set of finite resources Q with minimum total costs.

Section 3 is concerned with the following second order discrete model labelled as (PD) :

infimum φ (xT−1, xT ) , (1)

(PD) xt+2 ∈ F (xt, xt+1) , x0 = v0, x1 = v1, (2)

t = 0, . . . , T − 2, xT ∈ Q. (3)
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A sequence {xt}Tt=0 = {xt : t = 0, 1, . . . , T} is called a feasible trajectory for the stated problem

(1)-(3). It is required find a solution {x̃t}Tt=0 to a problem (PD) for the second discrete-time
problem, satisfying (2), (3) and minimizing φ (xT−1, xT ). In what follows, to this end our further
strategy is as follows: first to derive necessary and sufficient conditions of optimality for problem
(PD) and then to derive duality results for them.

Definition 5. Let us say that for the convex problem (1) - (3) the nondegeneracy condition is
satisfied, if for points xt ∈ Rn, one of the following cases is fulfilled:
(i) (xt, xt+1, xt+2) ∈ rigphF, xT ∈ riQ, (xT−1, xT ) ∈ ridomφ, t = 0, . . . , T − 2,
(ii) (xt, xt+1, xt+2) ∈ int gphF, t = 0, . . . , T − 2, xT ∈ intQ (with the possible exception of one
fixed t) and φ is continuous at (xT−1, xT ). It follows from the nondegeneracy condition that
if {x̃t}Tt=0 is the optimal trajectory in the problem (1)-(3), then the cones of tangent directions
KgphF (x̃t, x̃t+1, x̃t+2) are not separable and consequently, the condition of Theorem 3.2 from
Mahmudov (2011) is satisfied.

3 Necessary and sufficient conditions of optimality for an
abstract model of economy with second order DSI

To establish optimality, we first of all reduce the problem (PD) at hand to a convex programming
problem and use its results. Let us introduce a vector u = (x0, x1, . . . , xT ) ∈ Rm,m = n(T + 1)
and define in the space Rn(T+1) the following convex sets

Gt = {u = (x0, . . . , xT ) : (xt, xt+1, xt+2) ∈ gphF} , D0 = {u = (x0, . . . , xN ) : x0 = v0} ,
D1 = {u = (x0, . . . , xN ) : x1 = v1} , D = {u = (x0, . . . , xN ) : xT ∈ Q} .

Now, denoting g(u) = φ (xT−1, xT ) we will reduce this problem to the problem with geometric
constraints. Indeed, it can easily be seen that our basic problem (1)-(3) is equivalent to the
following one

minimize g(u) subject to u ∈ A =

(
T−2∩
t=0

Gt

)
∩D ∩D0 ∩D1. (4)

In the terms of first order discrete inclusions from Mahmudov (2011) we are ready to give the
necessary and sufficient conditions for the problem (1)-(3).

Theorem 1. Let F be convex set-valued mapping, φ be proper convex function and Q ⊆ Rn

be nonempty convex set. Besides, let {x̃t}Tt=0 be an optimal trajectory to the second order
discrete-time problem with (PD). Then there exist vectors x∗t , µ

∗
t , t = 0, . . . , T and a number

α ∈ {0, 1} simultaneously not all zero, such that the adjoint Euler-Lagrange type inclusions (i),
and transversality conditions (ii) hold:

(i)
(
x∗t − µ∗

t , µ
∗
t+1

)
∈ F ∗ (x∗t+2; (x̃t, x̃t+1, x̃t+2)

)
, t = 0, 1, . . . , T − 2,

(ii)
(
µ∗
T−1 − x∗T−1, µ

∗
T − x∗T

)
∈ α∂(x,y)φ (x̃T−1, x̃T ) , µ

∗
T ∈ K∗

Q (x̃T ).
In addition, if the nondegeneracy condition is satisfied, then α = 1 and these conditions are
sufficient for optimality of the trajectory of {x̃t}Tt=0.

Proof. Under the nondegeneracy condition, the necessary and sufficient conditions of problem
(4) are reduced to the condition ∂ug(ũ) ∩K∗

A(ũ) ̸= ∅ and its interpretation, where ∂ug(ũ) is a
subdifferential of g at a point ũ.

4 Duality for an abstract model of economy with
second-order DSI

This section is devoted to the construction of the dual problem and the establishment of the
duality relationship. For construction of duality we need the following auxiliary result.
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We call the following problem, labelled as (P ∗
D), the dual problem to the problem with second

order DSIs (PD)

(P ∗
D) sup

x∗
t ,µ

∗
t ,

t=0,.,T

{
−φ∗ (µ∗

T−1 − x∗T−1, µ
∗
T − x∗T

)
+

T−2∑
t=0

MF

(
x∗t − µ∗

t , µ
∗
t+1, x

∗
t+2

)
+ ⟨v0, µ∗

0 − x∗0⟩

− ⟨v1, x∗1⟩ −WQ (−µ∗
T )

}
,

where WQ is a support function of the set Q, respectively.

Theorem 2. If β and β∗ are the optimal values of the optimization problem for second order
DSIs (PD) and its dual problem (P ∗

D), respectively, then β ≥ β∗ for all feasible solutions of
primal (PD) and dual (P ∗

D) problems. Besides, if the nondegeneracy condition is satisfied, then,
the existence of a solution to one of these problems implies the existence of a solution to another,
where β = β∗ and in the case β > −∞ the dual problem (P ∗

D) has a solution.

Proof. It is known from convex analysis that the operations of addition and infimal convo-
lution of convex functions are dual to each other and for a problem (4) the dual problem is
sup {−g∗ (u∗)− δ∗A (−u∗)}, where δA(·) is the indicator function of A, i.e., δA(u) = 0, u ∈ A and
δA(u) = +∞, u /∈ A.

Theorem 3. Suppose that {x̃t}Tt=0 is an optimal solution to primal problem (PD) and that the
nondegeneracy condition is satisfied. Besides, suppose that φ is proper convex closed function,
Q and F are convex closed set and set-valued mapping, respectively. Then the family of vectors
{x∗t , µ∗

t }
T
t=0 is an optimal solution to the dual problem (P ∗

D) if and only if the adjoint Euler-
Lagrange type inclusions (i), and transversality conditions (ii) of Theorem 1 are satisfied.

5 Model of mathematical economics with second order
polyhedral DSIs

In this section we establish the dual problem (PL∗) to the problem with the following second
order polyhedral differential inclusion:

infimum φ (xT−1, xT )

(PL) xt+2 ∈ F (xt, xt+1) , x0 = v0, x1 = v1,

t = 0, . . . , T − 2, xT ∈ Q,Q = {x : Dx ≤ 0},
F (x, y) = {z : Ax+By − Cz ≤ d},

(5)

where F is a second order polyhedral set-valued mapping, A,B,C,D are s × n dimensional
matrices, d is a s-dimensional column-vector, φ : R2n → R1 is a convex function, v0, v1 are fixed
vectors. We label this problem by (PL). Then with respect to the dual problem (P ∗

D) first we
should calculate MF (x∗, y∗, z∗) :

MF (x∗, y∗, z∗) = inf {⟨x, x∗⟩+ ⟨y, y∗⟩ − ⟨z, z∗⟩ : (x, y, z) ∈ gphF} .

In fact, denoting w = (x, y, z) ∈ R3n, w∗ = (x∗, y∗,−z∗) ∈ R3n we have a linear programming
problem

inf {⟨w,w∗⟩ : Sw ≤ d} , (6)

where S = [A
...B

...−C] is s× 3n block matrix. Then according to the linear programming theory
if w̃ = (x̃, ỹ, z̃) is a solution of (6), then there exists s-dimensional vector λ ≥ 0 such that

w∗ = −S∗λ, ⟨Ax̃+Bỹ − Cz̃ − d, λ⟩ = 0.
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On the contrary, if these conditions are satisfied, then w̃ = (x̃, ỹ, z̃) is a solution of the problem
(6). Hence, w∗ = −S∗λ means that x∗ = −A∗λ, y∗ = −B∗λ, z∗ = −C∗λ, λ ≥ 0. Thus, we find
that

MF (x∗, y∗, z∗) = ⟨x̃,−A∗λ⟩+ ⟨ỹ,−B∗λ⟩ − ⟨z̃,−C∗λ⟩
= −⟨Ax̃, λ⟩ − ⟨Bỹ, λ⟩+ ⟨Cz̃, λ⟩ = −⟨d, λ⟩.

(7)

On the other hand, from the form of MF

(
x∗t − µ∗

t , µ
∗
t+1, x

∗
t+2

)
by Theorem 1 we derive that

x∗t − µ∗
t = −A∗λt+2, µ

∗
t+1 = −B∗λt+2, x

∗
t+2 = −C∗λt+2, λt ≥ 0. (8)

Further, since the set Q is a cone it follows that

WQ (x∗) =

{
0, if x∗ ∈ Q∗,
+∞ if x∗ /∈ Q∗

i.e., the support function of a cone is the indicator function of its dual cone. Then it is easy to
calculate that

Q∗ = {x∗ : x∗ = −D∗γ, γ ≥ 0} , i.e., µ∗
T = −D∗γ. (9)

Therefore, considering (7)-(9) and Theorem 1 we have the following dual problem, labelled
(PL∗) :

sup
λt≥0,γ≥0,
t=0,...,T

{
−φ∗ (C∗λT−1 −B∗λT−1, C

∗λT −D∗γ)−
T−2∑
t=0

⟨d, λt+2⟩+ ⟨v0, A∗λ2⟩+ ⟨v1, C∗λ1⟩

−WQ (D∗γ)

}
.

Now, before formulation of duality theorem we should proof sufficient condition of optimality
for a problem (PL).

Theorem 4. Let φ : R2n → R1 be continuous proper convex function and F be a polyhedral
set-valued mapping given in problem (PL). Then for the optimality of the trajectory x̃(·) in
problem (PL) with second order polyhedral differential inclusions, it is sufficient that there exists
a function λt ≥ 0, t = 0, .., T and vector γ ≥ 0 satisfying a.e. the following second order
Euler-Lagrange type polyhedral differential inclusion and transversality condition at the endpoint
t = T :

(1) A∗λt+2 +B∗λt+1 − C∗λt = 0, , λt ≥ 0, t = 0, .., T − 2,
⟨Ax̃t +Bx̃t+1 − Cx̃t+2 − d, λt⟩ = 0, t = 0, . . . , T − 2,

(2) (C∗λT−1 −B∗λT−1, C
∗λT −D∗γ) ∈ α∂(x,y)φ (x̃T−1, x̃T ).

Proof. In fact, condition (1) of the theorem immediately follows from formula (8). Further, by
the conditions (a), (b) of Theorem 1 we have(

µ∗
T−1 − x∗T−1, µ

∗
T − x∗T

)
∈ α∂(x,y)φ (x̃T−1, x̃T ) . (10)

Hence, by (8) and (9) from (10) we derive that

(C∗λT−1 −B∗λT , C
∗λT −D∗γ) ∈ α∂(x,y)φ (x̃T−1, x̃T ) .

The proof of theorem is completed.

Then, as a result of Theorems 2 and 3 for a problem (PL) we have the following duality
theorem.
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Theorem 5. Let the conditions of Theorem 1 be satisfied and {x̃t}Tt=0 be an optimal solution of

the primal problem (PL). Then
{
λ̃t

}T

t=0
, λ̃t ≥ 0, t = 0, .., T is an optimal solution of the dual

problem (PL∗) if and only if the sufficient optimality conditions of Theorem 4 are satisfied. In
addition, the optimal values in the primal (PL) and dual (PL∗) problems are equal.

Remark 1. Obviously, λt ≥ 0, t = 0, .., T can be interpreted as a price of a resource. Wherein,
if λi

t = 0(i = 1, . . . , n) for some i whenever the supply of this resource is not exhausted by
the activities. In economic terminology, such a resource is a ”free good”; the price of goods
that are oversupplied must drop to zero by the law of supply and demand. This fact is what
justifies interpreting the objective for the dual problem as maximizing the total implicit value of
the resources consumed, rather than the resources allocated. Strong duality means the solution
to these matches centralized if λ̃t is optimal multiplier. Strong duality guaranteed by convexity.

6 Neumann-Gale Model for second order DSIs

In this section we consider an abstract economic model, graph of which is a cone in R3n and
then the famous Neumann-Gale model. Let K ⊆ Rn × Rn × Rn be a cone, gph F = K, where

F (x, y) = {z : (x, y, z) ∈ K}.

In models of economic dynamics, a situation corresponding to this example is most often consid-
ered, and the model itself is called the John von Neumann-David Gale model (Neumann-Gale).
The following lemma is very important for calculation of LAM in Neumann-Gale model.

Lemma 1. Let K ⊆ Rn × Rn × Rn be a cone, gph F = K, where F (x, y) = {z : (x, y, z) ∈ K}.
Then at a point (x0, y0, z0) ∈ K the LAM F ∗ (z∗; (x0, y0, z0)) is calculated by the formula

F ∗ (z∗; (x0, y0, z0)) := {(x∗, y∗) : (x∗, y∗,−z∗) ∈ K∗, ⟨x0, x∗⟩+ ⟨y0, y∗⟩ = ⟨z0, z∗⟩} .

Proof. Let (x0, y0, z0) ∈ K. Since KF (x0, y0, z0) ≡ KgphF (x0, y0, z0) = cone (K − (x0, y0, z0)),
then according to the definition (x∗, y∗,−z∗) ∈ K∗

F (x0, y0, z0) if and only if

⟨x− x0, x
∗⟩+ ⟨y − y0, y

∗⟩ − ⟨z − z0, z
∗⟩ ≥ 0

for all (x, y, z) ∈ K. Rewriting the last inequality in the form

⟨x, x∗⟩+ ⟨y, y∗⟩ − ⟨z, z∗⟩ ≥ ⟨x0, x∗⟩+ ⟨y0, y∗⟩ − ⟨z0, z∗⟩

by Lemma 1.18 from Mahmudov (2011) we have (x∗, y∗,−z∗) ∈ K∗ and the lower bound of the
left side of the latter inequality on (x, y, z) ∈ K is equal to zero. Hence,

0 ≥ ⟨x0, x∗⟩+ ⟨y0, y∗⟩ − ⟨z0, z∗⟩ . (11)

On the other hand, since (x0, y0, z0) ∈ K and (x∗, y∗,−z∗) ∈ K∗, then

0 ≤ ⟨x0, x∗⟩+ ⟨y0, y∗⟩ − ⟨z0, z∗⟩ . (12)

Finally, from the inequalities (11),(12) we get, ⟨x0, x∗⟩+ ⟨y0, y∗⟩ = ⟨z0, z∗⟩. Therefore,

F ∗ (z∗; (x0, y0, z0)) := {(x∗, y∗) : (x∗, y∗,−z∗) ∈ K∗, ⟨x0, x∗⟩+ ⟨y0, y∗⟩ = ⟨z0, z∗⟩} .

Let now take Q = Rn in problem (PD). Then, obviously, K∗
Q(x) = {0}. Then considering

into account the formula K∗
Q(x) = {0} and Lemma 1 the conditions of Theorem 1 we can

summarize as following theorem.
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Theorem 6. Let gphF (·, t) = K ⊆ R3n and Q = Rn. Besides, let {x̃}Tt=0 be an optimal
trajectory to the second order discrete-time problem with (PD). Then there exist vectors x∗t ,
µ∗
t , t = 0, . . . , T and a number α ∈ {0, 1} simultaneously not all zero, such that the adjoint

EulerLagrange type inclusions (i), and transversality condition (ii), hold:
(i)
(
x∗t − µ∗

t , µ
∗
t+1,−x∗t+2

)
∈ K∗; ⟨x̃t, x∗t − µ∗

t ⟩+
⟨
x̃t+1, µ

∗
t+1

⟩
=
⟨
x̃t+2, x

∗
t+2

⟩
,

(ii)
(
µ∗
T−1 − x∗T−1, µ

∗
T − x∗T

)
∈ α∂(x,y)φ (x̃T−1, x̃T ) , t = 0, 1, . . . , T − 2.

Moreover, if the nondegeneracy condition is satisfied, then α = 1 and these conditions are
sufficient for optimality of the trajectory of {x̃t}Tt=0.

Note that with those interpretations in mind, dual optimal solutions have been termed
”shadow price vectors” and ”equilibrium price vectors”. Previously, it was known that an
∂(x,y)φ (x̃T−1, x̃T ) has an economic interpretation as the set of ”equilibrium price” vectors for
problem.

Consider now a special case - the so-called Neumann-Gale model. Suppose there are m
technological capacity to manufacture output with unit commodity intensity leads manufacture
of aj commodity aj ∈ Rn. Thus, the number of different manufactured goods is n and under
the unit commodity intensity utilization of j-th technological capacity of manufacture of i-th
commodity is produced amount of aij , i = 1, . . . , n goods. Naturally, we let aij ≥ 0. Here under
the unit commodity intensity employment is emitted bj ∈ Rn and cj ∈ Rn commodities. Now,
if at the given instant time there is x, y outputs, correspondingly then intensity λj of each
manufacture capacity, obviously must satisfy the inequality

x ≥
m∑
i=1

bjλ
j , y ≥

m∑
i=1

cjλ
j , bj ≥ 0, cj ≥ 0, λj ≥ 0.

In this case, a vector z of goods will be released that satisfies the equation z =
∑i=m

i=1 ajλ
j .

Finally, taking the matrices A,B and C with columns aj , bj and cj , respectively, we define a
set-valued mapping F (x, y), the graph of which is a polyhedral cone:

K = {(x, y, z) : x ≥ Bλ, y ≥ Cλ, z = Aλ, λ ≥ 0, λ ∈ Rm} ,
F (x, y) = {z = Aλ : x ≥ Bλ, y ≥ Cλ, λ ≥ 0, λ ∈ Rm} ,

(13)

where λ is a vector with components λj , j = 1, . . . ,m. Our interpretation implies the inequalities
A ≥ 0, B ≥ 0 and, i.e., the matrices A,B and C ≥ 0 are non-negative.

As is well known, a fixed-point theorem shows the existence of equilibrium points of an
abstract economy. Of course, for such a mapping, it makes sense to talk about fixed points
with respect to the variables x or y separately, that is, for F (x, y0) : Rn ⇒ Rn and F (x0, y) :
Rn ⇒ Rn. It is clear that, by the definition of fixed points, x ∈ F (x, y0) and y ∈ F (x0, y),
respectively, where x0, y0 are arbitrary fixed points. More specifically, it is easy to check that
for the presence of a Kakutani’s fixed point theorem, the inequalities A ≥ B and A ≥ C, must
hold, respectively.

Note that in general, Fixed-point theorems (Kakutani’s, Brouwer’s etc.) are a major tool
in both functional analysis and mathematical economics and are used to prove the existence of
solutions to differential equations and the existence of Nash equilibria among other things.
Since for (x, y, z) ∈ K

x = Bλ+ u, y = Cλ+ v, λ ≥ 0, u, v ≥ 0, u, v ∈ Rn,

then it is easy to calculate the dual cone K∗. Indeed, (x∗, y∗, z∗) ∈ K∗ if and only if

⟨x, x∗⟩+ ⟨y, y∗⟩+ ⟨z, z∗⟩ ≥ 0, (x, y, z) ∈ K,

i.e.
⟨Bλ+ u, x∗⟩+ ⟨Cλ+ v, y∗⟩+ ⟨Aλ, z∗⟩ ≥ 0 for all λ ≥ 0, u, v ≥ 0.
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Rewriting the last inequality in the form

⟨u, x∗⟩+ ⟨v, y∗⟩+ ⟨λ,B∗x∗ + C∗y∗ +A∗z∗⟩ ≥ 0, u ≥ 0, v ≥ 0, λ ≥ 0,

where ()∗ stands for the matrix transposition operation. Then from the latter inequality we
obtain in an obvious way the inequalities

x∗ ≥ 0, y∗ ≥ 0, B∗x∗ + C∗y∗ +A∗z∗ ≥ 0.

Therefore,
K∗ = {(x∗, y∗, z∗) : B∗x∗ + C∗y∗ +A∗z∗ ≥ 0, x∗ ≥ 0, y∗ ≥ 0} . (14)

Let now, at the initial instant time, there is a vector of goods (v0, v1).Then, by the time T , can
be produced xT goods, where xT is obtained from the chain of inclusions

xt+2 ∈ F (xt, xt+1) , x0 = v0, x1 = v1, t = 0, . . . , T − 2. (15)

If at time T and T − 1 the prices of goods pi
∗
, qi

∗
, i = 1, . . . , n are given, then the total cost of

goods at time T and T -1 will be determined by the following formula

n∑
i=1

pi
∗
xiT +

n∑
i=1

qi
∗
xiT−1 = ⟨xT , p∗⟩+ ⟨xT−1, q

∗⟩ ,

where p∗, q∗ are prices vectors with components pi
∗
, qi

∗
, i = 1, . . . , n. Now we can consider the

problem of choosing such a way of functioning of the economy, that is, such a trajectory that
satisfies the relations (15) in order to maximize ⟨xT , p∗⟩+ ⟨xT−1, q

∗⟩. The latter is equivalent to
minimizing the function

φ (xT−1, xT ) = −⟨xT , p∗⟩ − ⟨xT−1, q
∗⟩ .

We arrive at the problem considered above with a special cone K and a function φ (xT−1, xT ),
and the conditions of Theorem 1 can be used to characterize the optimal trajectory. Then,
taking into account (14), these relations can be written in the following form

x∗t ≥ µ∗
t , µ

∗
t+1 ≥ 0, B∗ (x∗t − µ∗

t ) + C∗µ∗
t+1 −A∗x∗t+2 ≥ 0, (16)

⟨x̃t, x∗t − µ∗
t ⟩+

⟨
x̃t+1, µ

∗
t+1

⟩
=
⟨
x̃t+2, x

∗
t+2

⟩
, t = 0, 1, . . . , T − 2, (17)(

µ∗
T−1 − x∗T−1,−x∗T

)
∈ α∂(x,y)φ (x̃T−1, x̃T ) , α ∈ {0, 1}. (18)

But in (18) φ (x̃T−1, x̃T ) = −⟨x̃T , p∗⟩ − ⟨x̃T−1, q
∗⟩ and therefore it is easy to see that

∂(x,y)φ (x̃T−1, x̃T ) = {−q∗} × {−p∗} and consequently,

x∗T−1 − µ∗
T−1 = αq∗, x∗T = αp∗, α ∈ {0, 1}. (19)

Note now that if the set-valued mapping F and the set Q in problem (PD) are polyhedrally,
then in its proof we can use Lemma 1.22 from Mahmudov (2011), from which it follows that in
the statement of Theorem 1 we can put α = 1. Therefore, α = 1 in the formula (18), and hence
in the formula (19).
We now put p∗t = x∗t , q

∗
t = µ∗

t , t = 0, . . . , T , and write the relations (11)-(17) and (19) in the
following form

p∗t ≥ q∗t , q
∗
t+1 ≥ 0, B∗ (p∗t − q∗t ) + C∗q∗t+1 −A∗p∗t+2 ≥ 0,

⟨x̃t, p∗t − q∗t ⟩+
⟨
x̃t+1, q

∗
t+1

⟩
=
⟨
x̃t+2, p

∗
t+2

⟩
, t = 0, 1, . . . , T − 2,

p∗T−1 − q∗T−1 = q∗, p∗T = p∗.

(20)

The carried out formal transformations lead to the following conclusion; the trajectory {x̃}Tt=0 of
the Neumann-Gale model, satisfying the relations (15), if and only if it maximizes the function
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of the final income, when there are vectors p∗t , q
∗
t such that relations (20) are satisfied. Consider a

possible economic interpretation of the result. Let us call the vectors p∗t , q
∗
t prices at the instant

time t. This makes sense, since p∗t ≥ 0, q∗t ≥ 0.

Let z be an arbitrary vector from F (x̃t, x̃t+1). It means that

z = Aλ, x̃t ≥ Bλ, x̃t+1 ≥ Cλ, λ ≥ 0.

Based on these relations and formulas (20), it is easy to verify the validity of the following chain
of equalities and inequalities:⟨

z, p∗t+2

⟩
=
⟨
Aλ, p∗t+2

⟩
=
⟨
λ,A∗p∗t+2

⟩
+
⟨
λ,B∗ (p∗t − q∗t ) + C∗q∗t+1

⟩
= ⟨Bλ, p∗t − q∗t ⟩+

⟨
Cλ, q∗t+1

⟩
≤ ⟨x̃t, p∗t − q∗t ⟩+

⟨
x̃t+1, q

∗
t+1

⟩
.

(21)

But since

⟨x̃t, p∗t − q∗t ⟩+
⟨
x̃t+1, q

∗
t+1

⟩
=
⟨
x̃t+2, p

∗
t+2

⟩
,

then from (21) we have ⟨
z, p∗t+2

⟩
≤
⟨
x̃t+2, p

∗
t+2

⟩
, z ∈ F (x̃t, x̃t+1) ,

which means that ⟨
x̃t+2, p

∗
t+2

⟩
= max

z

{⟨
z, p∗t+2

⟩
: z ∈ F (x̃t, x̃t+1)

}
.

An important conclusion follows from the obtained relation; for the optimal trajectory, there
are such prices that when the intensities of technological capacity of manufacture are selected
at the instant time (t, t + 1), the optimal trajectory corresponds to the one that provides the
maximum income in the prices of the instant time t+ 2.

7 Conclusion

The paper under the “nondegeneracy” condition deals with the abstract model of economics dy-
namics with second order DSIs, which are often used to describe various processes in science and
economics; first are derived necessary and sufficient optimality conditions in the form of Euler-
Lagrange type inclusions and transversality conditions. Then we treat dual results according
to the dual operations of addition and infimal convolution of convex functions. It appears that
the Euler-Lagrange type inclusions are duality relations for both primal and dual problems. As
an open problem for further investigations, we mention the study of NeumannGale model and
duality theory for an arbitrary higher-order DSIs. On the other hand, the generalization of
the considered models to the case with differential inclusions is of considerable interest. Con-
sequently, a rather complicated Mayer problem arises with the simultaneous determination of
conjugacy of φ and the appearance of higher orders. Thus, we can conclude that the proposed
method is reliable for solving various duality problems with discrete inclusions of a higher order
and for studying the Neumann-Gale model.
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